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by ’
Karen R. Christopherson, Kevin H. Nervick, William D. Heran
and Laurel Pringle

During 1980, the U.S. Geologicgl Survey conducted geophysical studies in
the region of Shaw Warm Springs, Colorado. The work was done to help assess
the geothermal potential of the region in a cooperative effort with the
Colorado Geological Survey. The geophysical methods wused were audio-
magnetotellurics (AMT) and E-field ratio telluric profiles.

Shaw Warm Springs lies approximately 8 kilometers north-northeast of Del
Norte, Colorado on the western edge of the San Luis Valley and at the eastern
flank the San Juan Mountains. The thermal manifestations are one major spring
which has a temperature of 30°C at the Shaw Springs Ranch. A few warm wells
have been reported in the valley to the east. |

The geology of the eastern San Juans (including the Shaw Springs area)
has been mapped and described by Lipman (1976). A generalized geologic map
(adapted from Lipman, 1976) is shown in fig. 1. Shaw Springs 1lies 6
kilometers southeast of the Tertiary (Oligocene) Summer Coon Volcanic Center
which was the source for most of the tuffs and rhyolites in the area. Shaw
Springs is situated on exposures of Quaternary alluvial fan deposits at the
edge of hills comprised of Tertiary tuffs. Numerous dikes of varying
composition expand radially from the volcanic center. The only mapped fault
in the immediate area lies approximately 1 kilometer northeast of the springs
trending radially from the volcanic center in a southeast direction.

Two E-field ratio telluric profiles.were made trending northeast using

250-meter dipoles. Their 1locations are shown 1in fig. 2. The changes in



voltage (equivalent to the square root of resistivity) relative to station 0-1
are plotted along the traverses in figs. 3 and 4. These show the relative
telluric voltage at an average period of 30 seconds referenced to dipole 0-1
on each line.

The telluric instrumentation and method has been described by Beyer
(1977). For this survey the banifidth of the recording system was 20-40
seconds (.025-.05 hertz), which results in a maximum depth of exploration of
many kilometers in normal earth material. As a rule of thumb, changes in
resistivity can be detected at about 1/2 a skin depth. In 20 ohm-meter
material the skin depth is 13 kilometers at a period of 30 seconds. For the
short traverses used, the results, of course, don’t reflect changes at such
great depths. The observed voltage variations can be thought of,
approximately, as due to a constant d.c. current sheet flowing in the earth
that gives rise to differences in voltage gradient as the current flows
through regions of differing resistivities.

Profile 1 (fig. 3) trended northeast over fairly gentle topography on the
western side of Elephant Rocks. The traverse crossed several geologic units
of colluvium, tuff, andesite, and latite. The profile shows two major drops
in voltage, the first between stations 3 and 5 and the second between stations
6 and 8. The second drop in voltage is almost a 40% decrease at the lowest
point between stations 7 and 8. A fault mapped by Lipman crosses Elephant
Rocks and if extended would cross profile 1 at station 8, and is co-linear
with a major dike from the Summer Coon center.

Station 3 1is also in 1line with the extension of another major dike
running radially from the Summer Coon center. The telluric data is consistent

with a small graben downdropped on faults located approximately at stations 3

and 8. The lower resistivity in the segment would then be due to a thickening
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of alluvium or other low-resistivity fill. The slight increase in voltage at
dipole 5-6 occurs when the line crosses a low ridge of andesite, which would
produce the observed high because andesite 1is more resistive than
alluvium. The lowest voltage dipoles (zones of lowest resistivity) at 3-4 and
7-8 reflect the edge of the graben and also increased porosity in and near the
faults caused by fracturing and subsgquent alteration.

The topography strongly suggests a fault trending parallel to the
aforementioned faults and crossing profile 1 at approximately station 5. This
fault would also trend near Shaw Springs. Traverse 1 shows little evidence of
this fault. The slight increase in voltage at dipole 5-6 could be due in part
to this fault with the upthrown side to the north. More likely though there
was little vertical movement on the fault and hence no expression of it in the
telluric data.

Profile 2 (fig. 4) was done on flat terrain entirely in a valley of
Quaternary alluvial fan deposits. The profile shows 1little expression of
lateral resistivity change. There is a slight decrease in voltage at dipoles
2-3 and 5-6 (both about 10% changes). The Elephant Rocks fault most probably
crosses the profile near station 5 as it is mapped farther to the southeast.
The decrease at dipole 5-6 1is probably a weak expression of this fault. The
low magnitude of voltage change could be caused either by damping of the
electric currents in the low-resistivity tuff and alluvium above the fault or
by a small resistivity contrast across the fault. If the slight decrease at
dipole 2-3 is also a fault expression then extension of it to the northwest
parallel to the Elephant Rocks fault would come near Warm Springs and connect
with the other fault inferred by the topography to 1lie near station 5 on
traverse 1. The decided difference in e;pression of the Elephant Rock fault

on the two traverses could be due to a change in resistivity contrasts across

the fault on the two traverses. 3
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Fig. 3: Shaw Warm Springs, telluric traverse 1
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Also, the topography and AMT data imply that a northeast-trending fault
lies on the eastern side of Elephant Rocks, creating a graben in the valley in
which traverse 2 is located. If this fault does exist, traverse 2 1s close to
parallel with its trend. Thus changes in voltage on traverse 2 are probably
reflecting faulting in both northwesterly and northeasterly directions which
can explain the difference in signatufe of the Elephant Rocks fault on the two
telluric profiles.

Twenty-three audio-magnetotelluric soundings were made in the vicinity of
Shaw Warm Springs. Station locations were separated by about 1 mile in most
cases.

The USGS scalar AMT system (Hoover & Long, 1975) measures earth response
to natural and artificial electromagnetic waves at 16 frequencies between 4.5
and 23000 hertz. The electric and magnetic fields are measured in orthogonal
directions at each frequency by 50-meter electric-field lines (E-lines) and an
orthogonal ferrite-cored coil. Two simultaneous soundings were made with E-
lines and coil oriénted north-south and east-west. Apparent resistivities are
calculated from a ratio between the measured electric- and magnetic-field
responses in orthogonal directions. (See Hoover and Long, 1975, for details.)

In thls survey, maps were prepared of the measured apparent resistivities
at two frequencles, 7.5 and 27 hertz, for the two E-line orientations. At 7.5
hertz, the skin depth or approximate depth of penetration by electromagnetic
waves is 821 meters In 20 ohm-meter ground. At 27 hertz the skin depth 1is 433
meters in 20 ohm-meter material. Detectability of resistivity changes would
be no better than one-half of the skin depth. The resistivity values were
contoured Iin logarithmic intervals and are shown in figures 5 through 8.

At 7.5 hertz (figs. 5 and 6) the lowést apparent resistivity values (less

than 25 ohm-meters) lie in the middle of the area in surficial exposures of



fan and outwash materials. The increasing highs to the northwest and west
denote the thickening of freéh volcanic rock with a higher resistivity than
the valley fill. The higher values to the east probably denote the detection
of Precambrian bedrock beneath the alluvium of the San Luis Valley.

The higher values near Shaw Springs of 33 and 45 ohm-meters probably show
that pervasive alteration by geothefmal waters has occurred and that there is
a present lack of much warm water near the surface (or within the first 500
meters).

At 27 hertz, which samples at about one-half the depth of 7.5 hertz, the
apparent resistivity maps (figs. 7 and 8) are more homogeneous than the 7.5
hertz maps with most values between 10 and 100 ohm-meters. The decrease in
resistivity for stations to the northwest and west when compared to 7.5 hertz
data 1is probably the result of sampling low resistivity surficial material
(alluvium or altered volcanics). The decrease in values to the east probably
results from the signals penetrating only into the wvalley alluvium and not
into the bedrock.

The resistivity values for the station near Shaw Springs at 27 hertz (20
and 22 ohm-meters) are slightly less than at 7.5 hertz signifying more
alteration closer to the surface or a sampling of a larger fraction of
alluvium. Still, the resistivities are not low enough to denote a large
geothermal éystem but could denote the presence of ground water. The lowest
values, occurring southeast of Shaw Springs, could result from leakage and
alteration by warm waters along southeast-trending faults into a thick porous
alluvial section.

All four AMT maps show lowest resistivity values lying to the southeast
of Shaw Springs. These, along with topégraphy and geology, suggest a north-

trending graben filled with fan deposits (Qaf) lying east of Elephant Rocks
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(see fig. 1). The boundary faults for the graben would trend northerly along
the two outcrops of tuff.

To conclude, the telluric data was quite useful in locating two faults.
The Elephant Rocks fault was traced to the east and west of 1its mapped
location by voltage drops on both telluric lines. Although the voltage change
on traverse 2 is small, it 1s sti¥l probably a result of lower resistivity
along the fault zone. Two other faults seem apparent running south of and
parallel to the Elephant Rocks fault. Each fault also is 1identified by a
voltage drop on one of the telluric lines. A fault just south of the Elephant
Rocks fault is very obvious from topography and shows expression as a decrease
in voltage at dipole 2-3 on traverse 2. Another fault farther south and
nearly parallel to the other two creates the voltage decrease at dipole 3-4 on
traverse 1. Extension of this fault to the southeast does not cross traverse
2.

It appears that Shaw Springs 1s the result of deep circulation of water
ascending along the southeast-trending fault shown by the telluric data south
of the Elephant Rock fault. There may be some leakage in the valley fill east
of the spring but no significant reservoir 1s apparent, other than what may be

present in the valley fill.
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